Mercurial > hg > tvii
comparison tests/test_logistic_regression.py @ 32:0f29b02f4806
[logistic regression] add model
author | Jeff Hammel <k0scist@gmail.com> |
---|---|
date | Mon, 04 Sep 2017 13:20:25 -0700 |
parents | fa7a51df0d90 |
children |
comparison
equal
deleted
inserted
replaced
31:fa7a51df0d90 | 32:0f29b02f4806 |
---|---|
57 | 57 |
58 def test_optimize(self): | 58 def test_optimize(self): |
59 """test gradient descent method""" | 59 """test gradient descent method""" |
60 | 60 |
61 # test examples | 61 # test examples |
62 w, b, X, Y = np.array([[1],[2]]), 2, np.array([[1,2],[3,4]]), np.array([[1,0]]) | 62 w, b, X, Y = (np.array([[1],[2]]), 2, np.array([[1,2],[3,4]]), np.array([[1,0]])) |
63 | 63 |
64 params, grads, costs = logistic_regression.optimize(w, b, X, Y, num_iterations= 100, learning_rate = 0.009, print_cost = False) | 64 params, grads, costs = logistic_regression.optimize(w, b, X, Y, num_iterations= 100, learning_rate = 0.009, print_cost = False) |
65 | 65 |
66 # expected output | 66 # expected output |
67 w_expected = np.array([[0.1124579 ], | 67 w_expected = np.array([[0.1124579 ], |
75 self.assertAlmostEqual(params['b'], b_expected) | 75 self.assertAlmostEqual(params['b'], b_expected) |
76 self.assertAlmostEqual(grads['db'], db_expected) | 76 self.assertAlmostEqual(grads['db'], db_expected) |
77 self.compare_arrays(w_expected, params['w']) | 77 self.compare_arrays(w_expected, params['w']) |
78 self.compare_arrays(dw_expected, grads['dw']) | 78 self.compare_arrays(dw_expected, grads['dw']) |
79 | 79 |
80 def test_predict(self): | |
81 | |
82 w, b, X, Y = (np.array([[1],[2]]), 2, np.array([[1,2],[3,4]]), np.array([[1,0]])) | |
83 | |
84 predictions = logistic_regression.predict(w, b, X) | |
85 | |
86 assert predictions[0][0] == 1 | |
87 assert predictions[0][1] == 1 | |
80 | 88 |
81 if __name__ == '__main__': | 89 if __name__ == '__main__': |
82 unittest.main() | 90 unittest.main() |