Mercurial > hg > tvii
view docs/matrix.txt @ 83:1b61ce99ee82
derivative calculation: midpoint rule
author | Jeff Hammel <k0scist@gmail.com> |
---|---|
date | Sun, 17 Dec 2017 13:51:13 -0800 |
parents | 857a606783e1 |
children |
line wrap: on
line source
[| | | ] X = [x1 x2 ...xm] = A0 [| | | ] Z1 = w'X + b1 A1 = sigmoid(Z1) Z2 = W2 A1 + b2 [---] W1 = [---] [---] `W1x1` gives some column vector, where `x1` is the first training example. Y = [ y1 y2 ... ym] For a two-layer network: dZ2 = A2 - Y dW = (1/m) dZ2 A1' db2 = (1./m)*np.sum(dZ2, axis=1, keepdims=True) dZ1 = W2' dZ2 * g1 ( Z1 ) : W2' dZ2 : an (n1, m) matrix : * : element-wise product dW1 = (1/m) dZ1 X' db1 = (1/m) np.sum(dZ1, axis=1, keepdims=True)