Mercurial > hg > tvii
view tests/test_logistic_regression.py @ 64:2adeb95cf4d5
add more useful software + an idea
author | Jeff Hammel <k0scist@gmail.com> |
---|---|
date | Sun, 17 Dec 2017 12:41:26 -0800 |
parents | 0f29b02f4806 |
children |
line wrap: on
line source
#!/usr/bin/env python """ test logistic regression """ import numpy as np import os import unittest from tvii import logistic_regression class LogisticRegresionTests(unittest.TestCase): def compare_arrays(self, a, b): assert a.shape == b.shape for x, y in zip(a.flatten(), b.flatten()): self.assertAlmostEqual(x, y) def test_cost(self): """test cost function""" w, b, X, Y = (np.array([[1],[2]]), 2, np.array([[1,2],[3,4]]), np.array([[1,0]])) expected_cost = 6.000064773192205 cost = logistic_regression.cost_function(w, b, X, Y) assert abs(cost - expected_cost) < 1e-6 def test_propagate(self): """test canned logistic regression example""" # sample variables w = np.array([[1],[2]]) b = 2 X = np.array([[1,2],[3,4]]) Y = np.array([[1,0]]) # calculate gradient and cost grads, cost = logistic_regression.propagate(w, b, X, Y) # compare to expected, dw_expected = np.array([[ 0.99993216], [ 1.99980262]]) db_expected = 0.499935230625 cost_expected = 6.000064773192205 self.assertAlmostEqual(cost_expected, cost) self.assertAlmostEqual(grads['db'], db_expected) assert grads['dw'].shape == dw_expected.shape for a, b in zip(grads['dw'].flatten(), dw_expected.flatten()): self.assertAlmostEqual(a, b) def test_optimize(self): """test gradient descent method""" # test examples w, b, X, Y = (np.array([[1],[2]]), 2, np.array([[1,2],[3,4]]), np.array([[1,0]])) params, grads, costs = logistic_regression.optimize(w, b, X, Y, num_iterations= 100, learning_rate = 0.009, print_cost = False) # expected output w_expected = np.array([[0.1124579 ], [0.23106775]]) dw_expected = np.array([[ 0.90158428], [ 1.76250842]]) b_expected = 1.55930492484 db_expected = 0.430462071679 # compare output self.assertAlmostEqual(params['b'], b_expected) self.assertAlmostEqual(grads['db'], db_expected) self.compare_arrays(w_expected, params['w']) self.compare_arrays(dw_expected, grads['dw']) def test_predict(self): w, b, X, Y = (np.array([[1],[2]]), 2, np.array([[1,2],[3,4]]), np.array([[1,0]])) predictions = logistic_regression.predict(w, b, X) assert predictions[0][0] == 1 assert predictions[0][1] == 1 if __name__ == '__main__': unittest.main()