Mercurial > hg > tvii
view tests/test_linear_regression.py @ 93:36c141f0f0bd default tip
add tensorflow dependency + console scripts
author | Jeff Hammel <k0scist@gmail.com> |
---|---|
date | Sun, 17 Dec 2017 14:31:35 -0800 |
parents | f1d1f2388fd6 |
children |
line wrap: on
line source
""" test linear regression """ import csv import math import os import numpy as np import random from tvii import linear_regression from tvii.noise import add_noise def test_linear_regression(): """Make sure we can do `W*x + b = y` properly""" # training data: exact fit, W=-1, b=1 x_train = [1,2,3,4] y_train = [0,-1,-2,-3] # our guesses W_guess = 0. # Why not? Be bold b_guess = 0. # perform the regression W, b, loss = linear_regression.linear_regression(x_train, y_train, W_guess=W_guess, b_guess=b_guess) # make sure we're close W_exact = -1. b_exact = 1. assert abs(W - W_exact) < 1e-5 assert abs(b - b_exact) < 1e-5 def test_linear_regression_noisy(): """ Make sure we can do `W*x + b = y` with some noise """ # start simple slope = 1.5 # rises 3 every 2 intercept = random.random() * 5. line = lambda x: slope*x + intercept # make range # TODO: np.linspace(-10., 10, 100) xspan = (-10., 10.) npoints = 100 dx = (xspan[-1] - xspan[0])/(npoints-1.) xi = [xspan[0]+dx*i for i in range(npoints)] # add some noise to it x = add_noise(xi, fraction=0.01) assert len(x) == len(xi) assert x != xi assert x == sorted(x) # calculate true y truey = [line(xx) for xx in x] # add some noise to that y = add_noise(truey, fraction=0.01) assert len(y) == len(truey) # you're now all set up for your regression W, b, loss = linear_regression.linear_regression(x, y) # Show us what you got! # TODO: this gives nan for both `W` and `b` # The lines loop okay so I'm guessing some sort of # numerical instability try: assert W == slope # XXX shouldn't be exactly equal anyway except AssertionError: dumpfile = os.environ.get('NETTWERK_FAILURE') if dumpfile: # dump the points with open(dumpfile, 'w') as f: writer = csv.writer(f) writer.writerows(zip(x, y)) pass # XXX ignoring true negative :(