# HG changeset patch # User Jeff Hammel # Date 1504556951 25200 # Node ID e2dd9503098f7c1b1f2e56d2c2c98aef734d54d7 # Parent 0f29b02f4806f374deeee792c43e071d125e9210 finalize logistic regression notes diff -r 0f29b02f4806 -r e2dd9503098f links.txt --- a/links.txt Mon Sep 04 13:20:25 2017 -0700 +++ b/links.txt Mon Sep 04 13:29:11 2017 -0700 @@ -1,1 +1,2 @@ https://s3.amazonaws.com/MLMastery/ml_performance_improvement_cheatsheet.pdf?__s=2gnd4eijcmfwyncxqmmz +http://www.wildml.com/2015/09/implementing-a-neural-network-from-scratch/ diff -r 0f29b02f4806 -r e2dd9503098f tvii/logistic_regression.py --- a/tvii/logistic_regression.py Mon Sep 04 13:20:25 2017 -0700 +++ b/tvii/logistic_regression.py Mon Sep 04 13:29:11 2017 -0700 @@ -185,8 +185,8 @@ """ # initialize parameters with zeros - raise NotImplementedError('TODO') # -> record TODO items - w, b = initialize_with_zeros(X_train.shape[0]) + w = np.zeros((X_train.shape[0], 1)) + b = 0 # Gradient descent parameters, grads, costs = optimize(w, b, X_train, Y_train, num_iterations, learning_rate, print_cost=print_cost)